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Abstract. Short description

1. Introduction

Polynomial optimization problems are ubiquitous in applied mathematics and engineer-
ing. For instance, Ahmadi and Majumdar [AM15] suggested to use polynomial optimiza-
tion in the field of artificial intelligence for solving real-time decision problems. In electric
power system design, the optimal power flow problem can be reduced to a polynomial
optimization problem as well, see [Jos16].

In general, an optimization problem takes the form

min
x

f(x) subject to gi(x) ≥ 0

hj(x) = 0,
(1.1)

where f, gi, hj are arbitrary functions of the variables x = (x1, ..., xn). The function f is
called the objective function, and the functions gi, hj are called the constraints. Hence,
when solving an optimization problem, one tries to minimize the objective function subject
to certain constraints. There are several ways to address this problem, which are collected
as nonlinear optimization methods. Some famous optimization approaches are the gradient
decent and Newton’s method. Those optimization algorithms seek to exploit the properties
of the objective function to find a local minimizer x∗ and hope (with justifications in special
cases) that the function value at the minimizer is close to the global minimum. Whereas
polynomial optimization takes a different approach.

Polynomial optimization, as the name suggests, is the specific case when the functions
f, gi, hj in (1.1) are polynomials. In this thesis, we focus on unconstrained polynomial
optimization, that is, the feasible domain is Rn. Then, instead of minimizing a polynomial,
one can search for its maximal lower bound. Hence, we can equivalently formulate the
unconstrained problem as

max r s.t. f(x)− r ≥ 0 for all x ∈ Rn,

where the objective function f is a polynomial, and the lower bound r is a real number.
To solve this problem, we need to decide whether a given polynomial is nonnegative

(see Definition 2.5). It turns out that this problem has been well studied in real algebraic
geometry since the beginning of the 19th century. However, it turns out that deciding
whether an arbitrary multivariate polynomial is nonnegative is, in the language of com-
putational complexity, co-NP-hard (computationally infeasible), see [BPT13, Chapter 3].

Key words and phrases. some keywords go here.
1



2 YIXUAN ZHOU

Therefore, one wants to find sufficient conditions that certify nonnegativity of a poly-
nomial which are easier to check, rather than directly deciding the nonnegativity of a
polynomial. Such conditions are called certificates of nonnegativity. The most famous
and canonical nonnegativity certificate is sums of squares (SOS) (see Definition 2.6). De-
ciding if a polynomial is a sum of squares can be formulated as a semidefinite program
(SDP) (see Definition 2.14). Under mild conditions, SDPs have known algorithms that
can solve the problem in polynomial time (efficiently) with respect to the input size, see
[BPT13, Chapter 2].

When solving the SDP, the solver is actually dealing with a set of linear equations, which
can be compactly written in the form Ax = b, obtained by the process of comparison of
coefficients (COC). Though this process is formally introduced in Section 2.3, the intuition
behind it is quite simple. It can be understood in terms of vectors after realizing that the
set of n-variate real polynomials with degree less than or equals to d, denoted by R[x]n,d
forms a vector space. Then any polynomial p(x) ∈ R[x]n,d can be uniquely identified as

p(x) =
∑k

j=0 cjbj given a basis B = {b0, ..., bk} of R[x]n,d. Hence, to determine whether 2
polynomials are equal, one can express the 2 polynomials in the same basis, and comparing
whether the coefficients are the same. This is the intuition behind COC. The equalities
that generated will then be used as the linear equations in SDP. For more about vector
space and basis, one could refer to the book Linear Algebra and Its Applications [LLM14].

Because the linear system that formed by COC depends on the basis B, the stability of
the linear system, measured by the condition number (see Definition 2.16), is drastically
fluctuated depends on the B that we chose. The stability of the system is very important
in practice because this measure how robust the method is under noises in the data. Yet,
it is unclear what basis generates the best result. In this paper, we perform numerical
experiments, with the computer’s aid, of different choices of the basis B to determine, in
different scenarios, what is the best choice of basis to carry out the process of COC so
that the resulted linear system is most stabled.

The paper is organized as follows: In Section 2, we introduce the preliminary material,
including the tools that we need throughout this paper, and the algorithm that will be
employed to carry out the COC. A brief survey of polynomial bases that are considered in
this paper is also included in this section. Section 3 presents the main numerical results
of the condition number. Finally, in Section 4, we discuss the result that is obtained in
Section 3 and some thoughts on what are the further efforts that can be made to this
problem.
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2. Preliminaries

In this section, we introduce the notation and the necessary background material to
understand the problem. Moreover, we describe the algorithm that is used to carry out
the comparison of coefficients (COC) process and provide a brief survey of the polynomial
bases that are considered in this thesis.

2.1. Real Polynomials. To rigorously define the considered decision problem, we first
recall the terms related to polynomials.

Throughout, we use bold letters for vectors, e.g. x = (x1, ..., xn) ∈ Rn. The set of all
m by n real matrices is denoted as Rm×n and the ring of real n-variate polynomials is
denoted as R[x]. We use R[x]n,d for the set of all n-variate real polynomials with degree
less than or equal to d. Further, to ease the notations, we define the following function:

N : N→ N

N (d) 7→
(
n+ d

d

)
,

where
(
n+d
d

)
stands for the binomial coefficient n+ d choose d.

A polynomial is an expression consisting of variables and coefficients that involves
only the operations of addition, subtraction, multiplication, and non-negative integer
exponentiation of variables. Therefore, a univariate polynomial takes the form, p(x) =∑l

i=1 cix
α(i), with ci being the coefficients and α(i) being the exponents of the term.

Clearly, this generalizes to more variables.

Example 2.1. Consider p(x, y, z) = x4 + 2xyz− 6y+ 7 with x, y, z being variables. This
polynomial has 3 variables and has degree 4, thus it belongs to R[x]3,4.

Immediate observations about R[x]n,d are:

Proposition 2.2. R[x]n,d forms a finite real vector space of dimension N (d).

Proof. Suppose p(x), q(x) ∈ R[x]n,d, c ∈ R, then we have, cp ∈ R[x]n,d because multi-
plication by a scalar neither increases the degree nor introduces new variables. We have
p+ q ∈ R[x]n,d for the same reason. This proves the first part of the claim.

For the dimension of R[x]n,d, we observe that any n-variate degree d polynomial can be
written in the form

c0 + c1x1 + c2x2 + ...+ cn+1x
2
1 + cn+2x1x2 + ...+ clx

d
n.

So the set B = {1, x1, x2, ..., x
2
1, x1x2, ...x

d
n} spans R[x]n,d. Moreover, it is a linear inde-

pendent set. Thus, it forms a basis of R[x]n,d. By counting the involved monomials, the

cardinality of B is |B| =
(
n+d
d

)
= N (d), which yields the dimension of R[x]n,d.

�

Let Bn,d be a basis of R[x]n,d. In the proof above, we used a canonical basis to R[x]n,d,
namely the monomial basis,

Bn,d = {1, x1, x2, ..., xn, x
2
1, x1x2, ..., x

d
n}.
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Remark 2.3. If we list the elements of Bn,d in a column vector b, then bbT forms a
matrix whose upper triangular entries can be collected to form a basis of R[x]n,2d.

Example 2.4. Let B2,1 = {1, x, y} be a basis of R[x]2,1, then1
x
y

 [1 x y
]

=

1 x y
x x2 xy
y xy y2


The entries of the upper triangle of the matrix, {1, x, y, x2, xy, y2} form a basis of R[x]2,2.

Next, we define the terminologies related to the decision problem.

Definition 2.5. Let Pn,2d denote the set of nonnegative polynomials with n variables and
degree at most 2d, that is

Pn,2d = {p ∈ R[x]n,2d : p(x) ≥ 0, for all x ∈ Rn}.
The reason that we chose to consider the degree 2d in the definition is that nonnegative

polynomials always have even degrees. A polynomial with odd degree would be negative
when we fix all the other variables and move one variable to positive or negative infinity.

Definition 2.6. Let Σn,2d denote the set of polynomials with n variables and degree at
most 2d that are sum of squares (SOS), that is

Σn,2d = {p ∈ R[x]n,2d : there exists q1(x), ..., qk(x) ∈ R[x]n,d s.t. p(x) =
k∑
i=1

q2
i (x)}.

Notice that Σn,2d ⊆ Pn,2d because sum of squares of real numbers are always nonnega-
tive. In fact, geometrically, these two sets are convex cones, see [BPT13, Chapter 3].

One natural question to ask is whether these two cones are the same. In 1888, David
Hilbert showed that they are usually not the same.

Theorem 2.7 ([Hil88]). There are only three special cases where the two cones coincide,
i.e. Σn,2d = Pn,2d: univariate polynomials, quadratic polynomials, and bivariate polyno-
mials of degree four. Namely, when n = 1, or d = 2, or n = 2 and d = 4.

However, Hilbert’s proof is highly non-constructive. Therefore, it took almost 70 years
until Motzkin, accidentally, found the first nonnegative polynomial that is not a SOS. In
[Mot67], he presented the Motzkin’ polynomial,

p(x, y) = x4y2 + x2y4 − 3x2y2 + 1.

Coming back to our original problem, as discussed in the introduction, the decision prob-
lem of whether an arbitrary polynomial p(x) ∈ Pn,2d is computationally hard. Whereas
we can efficiently decide whether p(x) ∈ Σn,2d using semidefinite program, which we intro-
duce in next subsection. Hence, we make the following trade off. We use the certificates
to check the nonnegativity in a computationally feasible way, accepting fact that we fail
to identify some nonnegative polynomials.

Hence, the decision problem that is considered in this thesis is the following:

(2.1) Given p(x) ∈ R[x]n,2d, decide whether p(x) ∈ Σn,2d.
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2.2. Linear Algebra And Semidefinite Programming. Since R[x]n,2d forms a vector
space, we use tools from linear algebra to analyze its structure and properties. Besides,
both semidefinite programming and the measurement of stability of system require some
tools from linear algebra. Thus, we devote this subsection introducing all the required
tools.

Definition 2.8. Given a matrix A ∈ Rn×n, we say it is symmetric if AT = A. We denote
the set of symmetric matrix as Sn.

A famous result of symmetric matrices is:

Theorem 2.9 (Spectral Theorem [Gol96]). Given a symmetric matrix A ∈ Rn×n, it can
be diagonalized as

A = P−1DP,

where D is a diagonal matrix with real entries, and P is an orthonormal matrix.
In other words, all eigenvalues of A are real, and their corresponding eigenvectors form

an orthonormal basis of Rn.

Now, we introduce the key idea relating to semidefinite programming — positive semi-
definite matrix.

Definition 2.10. A matrix A ∈ Rn×n is positive semidefinite (psd) if A is symmetric and

xTAx ≥ 0 for all x ∈ Rn.

We denote it as A < 0.

Proposition 2.11. A matrix is psd if and only if all its eigenvalues are nonnegative.

Proof. Towards a contradiction, suppose A has eigenvalue λ < 0. For x being its corre-
sponding eigenvector, we have xTAx = λxTx < 0, a contradiction.

On the other hand, assume A has only positive eigenvalues λi. By A being a symmetric
matrix, its eigenvectors form a basis. Thus, for any x ∈ Rn, we have x =

∑n
i=1 civi where

vi are the eigenvectors of A, that are also orthonormal to each other. Hence, xTAx =∑n
i=1 λi. Since all λi ≥ 0, we have xTAx ≥ 0. �

Definition 2.12. Given A,B ∈ Rm×n, then the Frobenius inner product
〈·, ·〉 : Rm×n × Rm×n → R is defined as

〈A,B〉 = Tr(ATB),

where Tr stands for the trace of the matrix.

It is natural to generalize the above definition by the following,

Definition 2.13. Let k be a positive integer, A ∈ Rm×kn, B ∈ Rm×n, then the inner
product between A and B, 〈·, ·〉 : Rm×kn × Rm×n → Rk is defined as

〈A,B〉 =

〈A1, B〉
...

〈Ak, B〉

 ,
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where A =

A1
...
Ak

.

Definition 2.14. A semidefinite program (SDP) in standard primal form is the following
optimization problem. Given A,C,X ∈ Rm×n,

minimize 〈C,X〉 subject to 〈Ai, X〉 = bi, i = 1, ..., k

X < 0
.(2.2)

One can compactly write the constraint 〈Ai, X〉 = bi compactly in a matrix form, we
can collect all the constraints and write it is 〈A,X〉 = b The aim of this thesis is to study
the stability of this linear system. The tool that to measure this stability is the condition
numbers of a matrix.

If A is a square matrix, then the condition number can easily be calculated using its
inverse. However, if A is rectangular, then we need to use its pesudo-inverse, see the
following definition.

Definition 2.15. Given a matrix A ∈ Rm×n, the pesudo-inverse, which is also knows as
the Moore-Penrose inverse of A, is the matrix A† satisfying:

• AA†A = A,
• A†AA† = A†,
• (AA†)T = AA†,
• (A†A)T = AA†.

Every matrix has its pesudo-inverse, and when A ∈ Rm×n is full rank, that is rank(A) =
min{n,m}, A can be expressed in simple algebraic form.

In particular, when A has linearly independent columns, A† can be computed as

A† = (ATA)−1AT .

In this case, the pesudo-inverse is called the left inverse, since A†A = I.

And when A has linearly independent rows, A† can be computed as

A† = AT (AAT )−1,

and the pesudo-inverse is called the right inverse, since AA† = I.

Definition 2.16. Given a matrix A ∈ Rm×n, the condition number of A, κ(A) is defined
as

κ(A) =

{
||A|| · ||A†|| if A is full rank

∞ otherwise

for any norm || · || imposed on A.

To understand how the condition number is related to the stability of the system, we
introduce another way to express it, namely

κ(A) =
σmax(A)

σmin(A)
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where the σmax and σmin denotes the maximal and minimal singular values of A respec-
tively.

Intuitively, when the condition number is large, error in the input along the max di-
rection of the singular value would dominate the input that is along the direction of the
minimum singular value. Therefore, the smaller the condition number is the more sta-
ble our system is under fluctuations caused by noises. The rigorous explanation of the
condition number can be found in [CK07].

2.3. Comparing of Coefficients Algorithm. With all the tools in hand, we are now
ready to introduce the COC algorithm that solves the decision problem described in (2.1).

The algorithm is build upon the following theorem that shows how to translate (2.1)
into an SDP, the theorem is given in the third chapter of [BPT13].

Theorem 2.17. Let p(x) ∈ Pn,2d. If p(x) ∈ Σn,2d, then for any basis Bn,d of R[x]n,d, there
exists a matrix Q ∈ RN (d)×N (d) such that

(2.3) BTn,dQBn,d = p(x) and Q < 0.

Proof. If p(x) ∈ Σn,2d, we can write

p(x) =
k∑
i=1

q2(x) =
[
q1(x), ..., qk(x)]

] q1
...
qk


Notice that qj(x) ∈ Pn,d.

Now given Bn,d = {b1, ..., bN (d)} be a basis of R[x]n,d, we have

qj(x) =

N (d)∑
i=1

cjbj =
[
c1, ..., cN (d)]

]  b1
...

bN (d)


By substituting the section equation into the first, we have

p(x) =
[
b1 ... bN (d)

]  c1,1 ... c1,k
...

cN (d),1 ... cN (d)

c1,1 ... c1,N (d)
...
ck,1 ... ck,N (d)

 b1
...

bN (d)


Now the matrices in the middle is CTC = Q a psd matrix, which proofs the forward

direction of this theorem.
On the other hand, if we know p(x) = BTn,dQBn,d where Q is a psd matrix, we can just

apply the Cholesky decomposition to get Q = LTL, and recover the SOS form of p(x) as
BTn,dLTLBn,d. �

Therefore, we have reduced our problem decision problem to finding a specific psd
matrix. Actually, it would be solving a feasibility of SDP problem. When examine the
formulation of SDP in (2.2), we would minimize a target function subject to a set of
linear constraints and the variable being a psd matrix. By examining (2.3), we can see
that we have a set of constraints (later we translate this set of constraints exactly into
the constraints in SDP) and the requirement of Q being a psd. Therefore, we found that
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the existence condition that is provided in the Theorem 2.17 is the subpart of the SDP
which determines whether there is a feasible point that satisfies the constraints that are
imposed.

To address how the constraints BTn,dQBn,d = p(x) are translated into the constraints
〈A,X〉 = B in the SDP, we have the following proposition.

Proposition 2.18. We pick a basis of Bn,d = {b1, · · · , bN (d)} of R[x]n,d, and list it in

a vector b =
[
b1 · · · bN (d)

]T
. Then by Remark 2.3, we can form a basis Bn,2d =

{b′1, ..., b′(n+2d
2d )
} from b. Suppose the polynomial p(x) of interest is given by

∑(n+2d
2d )

i=1 cib
′
i.

Then, we have the reformulation of the constraints as p(x) = bTQb = 〈Q,bbT 〉, which
when written separately in different rows is exactly the formulation in Definition 2.14.

Notice that the constraints p(x) = 〈Q,bbT 〉 requires us compare two polynomials to
determine whether they are equal. By Theorem 2.2, we have the equality of two vectors is
established by comparing the coordinates of the two vectors when under the same basis.
Thus, when the basis of p(x) is the same as the basis formed by the upper triangle of
bbT , we can compare the coordinates of the vectors to establish the equality. And the
coordinates for polynomials are called their coefficients. Thus, we name this process as
comparing of coefficients (COC) and the paper is designated to evaluate the stability of
the constrants p(x) = 〈Q,bbT 〉.

As we have mentioned, the stability is measured by the condition number of a matrix.
Thus, we would need to re-write the constraints in to the form Ax = c. Therefore, the
problem need to be further reformulated. To distinguish the choices of the involved basis
in this process, we introduce two specific matrices following the ideas of [Rec14].

Definition 2.19 ([Rec14]). We call the matrix bbT in Proposition 2.18 the moment
matrix, we denote this matrix as M, and it is a symmetric matrix by definition.

Example 2.20. Here is another place to do an example to illustrate moment matrix.

The moment matrix provides the first basis choice involved in the COC process. Sup-
pose the given polynomial p(x) =

∑k
j=0 cjbj is in the same basis as the resulted ba-

sis of the moment matrix, that is the upper triangle of bbT consists b0, ..., bk. Be-
cause Q < 0, Q is symmetric, it is completely determined by its upper triangle. Let

q =
[
q0,0, ..., q0,m, q1,1, q1,2, ..., qm,m

]T
be the vector consisting of all the elements of the

upper triangle of Q. The constraints p(x) = 〈Q,bbT 〉 can then be reformulated as a set

of linear equations Aq = c where c =
[
c0, ..., ck

]T
is the coefficients vector of p(x), and A

is a matrix that is used to establish the equality of polynomials. Then, we can measure
the stability of the constraints p(x) = 〈Q,bbT 〉 by the condition number of A.

Since, this matrix A is not the final matrix that is used in analysis, the procedure of
obtaining A is omitted.

Now, what if the p(x) is written in a basis that is different from the basis constructed
by the moment matrix? One might argue that we can simply apply a change of basis
matrix to convert p(x) into the basis that is used in moment matrix. However, that is
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inefficient and inaccurate. The reason is that a change of basis matrix would involve
writing the basis of one polynomial in terms of the basis of the other. This itself is a huge
process of COC and would result in an increase of perturbation to the system because
the condition number is never smaller than 1 [Gol96]. Therefore, we shall introduce the
coefficient moment matrix. In the remaining part of this section, we shall build our way
to it.

Suppose the moment matrix is constructed with the basis Bn,d and the polynomial p(x)

is written in the basis B′n,2d. That is supposed B′n,2d = {b′0, ..., b′k} where k =
(
n+2d

2d

)
− 1,

we have p(x) = c0b
′
0 + ...+ ckb

′
k.

Definition 2.21 ([Rec14]). We define the coefficient extraction map as the following map,

C : R[x]≤,2d × R[x]≤,2d → R
C(p, b′j) 7→ cj

When fixing sj, we have the coefficient extraction map being a linear map with respect
to the polynomial p(x). Indeed, we have

C(λp, b′j) = λC(p, b′j) λ ∈ R
C(p1 + p2, b

′
j) = C(p1, b

′
j) + C(p2, bj)

Remark 2.22. When the B′n,2d = {b′1, ..., b′k} is an orthonormal basis, i.e. 〈bi, bj〉δi,j (the
Dirac delta function), where the inner product is defined as

〈p, q〉 =

∫ b

a

p(x)q(x)dα(x)

There is a natural concretely definition for the coefficients extraction map. That is

C(p(x), b′j) = 〈p(x), b′j〉
When the basis is only orthogonal, we can still define the coefficients extraction map
concretely as,

C(p(x), b′j) =
1

||b′j||
〈p(x), b′j〉

where the norm || · || is induced by the corresponding inner product.

Remark 2.23. We should actually write the coefficient extraction map as CB′n,2d
, since it

depends on the base itself. However, when the base is clear, we just write it as C.

We can generalize the coefficient extraction map to take in a matrix as the first argu-
ment, and just entry-wise apply the map. With an abuse of notation, we have

Definition 2.24. Given a matrix of polynomials (pi,j(x))i,j all in the bases Let the coef-
ficient extraction map be defined as

C : R[x]m×n≤n,2d × R[x]≤n,2d → Rm×n

C(

p1,1 ... p1,n
...

pm,1 ... pm,n

 , b′j) =

C(p1,1, b
′
j) ... C(p1,n, b

′
j)

...
C(pm,1, b′j) ... C(pm,n, b′j)


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Remark 2.25. An immediate result from the above definition is that, given Q ∈ Rm×m,
M ∈ R[x]m×mn,2d , and a basis B′n,2d = {b′1, ..., b′k}, the matrix inner product provides the
following relation,

C(〈Q,M〉, b′j) = 〈Q, C(M, b′j)〉

Notice that, let Bn,d = {b0, ..., bl}, where l = N (d)−1, let b = [b1, ..., bl]
T , M = b ·bT ∈

Rl,l. Then given p(x) in B′n,2d = {b′0, ..., b′k}, p = c0b
′
0 + ... + ckb

′
k, given Q ∈ Rl,l be the

change of basis matrix from Bn,2d to B′n,2d, where Bn,2d is generated by Bn,d using remark
2.3, we have

(2.4) cj = C(p, b′j) = C(〈Q,M〉, b′j) = 〈Q, C(M, b′j)〉

Definition 2.26. Define the matrix Aj = C(M, b′j) be the coefficient moment matrix of
b′j.

An immediate observation we can make is the following proposition.

Proposition 2.27. Aj is symmetric, because M is symmetric.

Recall, the SOS problem is to decide, given a polynomial p(x), whether there exists
a Q < 0 such that p = bTQb, where b be the vector generated by Bn,d. Suppose p(x)
is given in B′n,2d, we can then reformulate the constraints bTQb using the coefficient
moment matrix as

(2.5) 〈Q,Aj〉 = cj ∀j = 0, ...,N (2d)− 1

Let

Aj =


a0,0 a0,1 ... a0,l

a0,1 a1,1 ... a1,l
...

a0,l a1,l ... al,l

 , Q =


q0,0 q0,1 ... q0,l

q0,1 q1,1 ... q1,l
...

q0,l q1,l ... ql,l

 ,
and set

aj =



a0,0

2a0,1
...

2a0,l

a1,1

2a1,2
...
al,l


,q =



q0,0

q0,1
...
q0,l,
q1,1,
q1,2

...
ql,l


∈ Rl(l+1)/2.

We can re-write the inner product 〈Q,Aj〉 using the fact that both Aj and Q are sym-
metric.

〈Q,Aj〉 = qT · aj = aj
T · q
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Then, finally, we can re-write the constraint p(x) = bTQb, as the system of linear
equations

Aq =

aT0...
aTl

q =

c0
...
cl

 = c

Thus, the numerical property of the SDP problem is completely captured by the condition
number of A. Therefore, we write code in python to examine different combinations of
bases under different degrees and number of variate in the Preliminaries sections. We list
the polynomial bases that we are interested in the following sections, and briefly touch
upon SDP before we present our results.

2.4. Polynomial Basis. In this section, we briefly survey the polynomial bases that
is considered in this thesis, and their associated coefficient extraction map (defined in
Definition 2.21). We also analyze the runtime of the coefficient extraction map.

2.4.1. Monomial Basis. The most canonical basis for R[x]n,d is the monomial basis.

Bn,d = {1, x1, x2, ..., x
2
1, x1x2, ..., x

d
n}

The coefficient extraction map associated to this basis is straightforward, one would
expand a given polynomial and group them by terms. Formally, we can capture this
process with the following algorithm.

Algorithm 1: Coefficient Extraction Map for Monomial

Result: Coefficient of b in p
Input: Polynomial p, Monomial basis b, Monomial Base B
expand p so that it is a sum of terms in B;
store coefficient of each term in a hash table H;
return H[b];

Suppose the input polynomial p ∈ R[x]n,d has k parentheses, has at most m terms in
each parenthesis, and has l characters (exclude all the operators) in it. The run time
of the above algorithm would be O(mk + nd + l). The O(mk) is the cost of operations
required to expand p; O(l) is the cost of operations to iterate through the polynomial to
group terms; O(nd) is the cost of operations to get the coefficient for each basis b in B.

Example 2.28. For example, the polynomial of the form p = (3x1 + x2)(x3 + x4) + x2

has k = 2, m = 2, l = 6, and is in R[x]2,2.

2.4.2. Orthogonal Polynomials. Other than the monomial basis, the bulk of the focus of
this thesis is on the orthogonal polynomial. The reason is that due to its orthogonality,
the coefficient extraction map is relatively easy to construct.

2.4.2.1. Chebyshev Polynomials. There are two kinds of polynomials are widely used in
numerical analysis, the Chebyshev Polynomial of the First Kind and Chebyshev Polyno-
mial of the Second Kind. The roots of these polynomials, called Chebyshev nodes are used
in polynomial interpolation because the resulting interpolation polynomial minimizes the
effect of Runge’s phenomenon.[MF04]
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There are many ways to generate the two sequence of polynomials in univariate set-
tings. Here, we decide to include the recursive definition since this would be the most
straightforward one to implement.

The univariate Chebyshev Polynomial of the First Kind can be constructed as

T0(x) = 1

T1(x) = x

Td+1(x) = 2xTd(x)− Td−1(x)

where Td(x) denotes the d degree univariate ChebyShev Polynomial of the First Kind.
Due to its orthogonality, the associated coefficient extraction map would be

Algorithm 2: Coefficient Extraction Map for Chebyshev First Kind

Result: Coefficient of b in p
Input: p be any polynomial, b be an element of a multivariate Chebyshev First

Kind basis
coeff =

∫ 1

−1
pb√

1−x2dx;

norm =
∫ 1

−1
bb√

1−x2dx;

return coeff
norm

;

When handling multivariate cases, we can again use Remark 2.3 to obtain bases in
higher dimensions.

The coefficient extraction map seems to be tedious to define in higher dimension cases.
However, building upon the idea of Mádi-Nagy we have the following proposition which
enable us to easily construct coefficient extraction map for orthogonal polynomials in
higher dimensions. [MN12]

Proposition 2.29. Given an orthogonal univariate polynomial base B = {b1, ..., bn}, and
assume the orthogonality is under the inner product

〈bi, bj〉 =

∫ u

l

bi(x)bj(x)w(x)dx,

where w(x) is a weight function, then the multivariate polynomial base generated using
Remark 2.3 is also orthogonal, and the corresponding inner product is

〈bi, bj〉 =

∫ u

l

...

∫ u

l

bi(x)bj(x)w(x1)...w(xn)dx1...dxn.

Proof. Consider the case where we start with an orthogonal univariate polynomial base
B = {b1(x), ..., bn(x)}. Then, using Remark 2.3 to construct a base for bivariate polyno-
mials, we would get

B′ = {b′1(x, y), ..., b′n2(x, y)} = {b1(x)b1(y), b1(x)b2(y), ..., b2(x)b1(y), ..., bn(x)bn(y)}.
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Now it is immediate from Fubini’s theorem that∫ u

l

∫ u

l

b′i(x, y)b′j(x, y)w(x)w(y)dxdy =

∫ u

l

∫ u

l

bi1(x)bj1(y)bi2(x)bj2(y)w(x)w(y)dxdy

=

∫ u

l

bi1(x)bi2(x)w(x)dx

∫ u

l

bj1(y)bj2(y)w(y)dy

=

{
C ifi1 = i2 and j1 = j2

0 otherwise
,

where c 6= 0 is the norm of a basis b′ ∈ mathcalB′. Inductively, one can generalize this to
higher dimensions as well. �

Now using this Proposition 2.29, we have the coefficient extraction map for multivariate
ChebyShev Polynomials of the First Kind be

C(p(x), b(x)) =

∫ 1

−1

p(x1, ..., xn)b(x1, ..., xn)√
1− x2

1

√
1− x2

2...
√

1− x2
n

dx1dx2...dxn.

The univariate Chebyshev Polynomial of the Second Kind can be constructed as

U0(x) = 1

U1(x) = 2x

Ud+1(x) = 2xUd(x)− Ud−1(x)

where Ud(x) denotes the d degree univariate ChebyShev polynomial of the Second Kind.
The associated coefficient extraction map would be

Algorithm 3: Coefficient Extraction Map for Chebyshev Second Kind

Result: Coefficient of b in p
Input: p be any polynomial, b be an element of a multivariate Chebyshev Second

Kind basis
coeff =

∫ 1

−1
pb
√

1− x2dx;

norm =
∫ 1

−1
bb
√

1− x2dx;

return coeff
norm

;

By the same process described above, we can construct multivariate Chebyshev polyno-
mial of the Second Kind using Remark 2.3, and we can construct the associated coefficient
extraction map using Proposition 2.29.

2.4.2.2. Legendre Polynomials. Legendre Polynomials is special orthogonal polynomial ba-
sis that has a vast number of mathematical properties, and numerous applications. One of
the most modern applications that Legendre polynomials are used in is machine learning.
According to Yang, Hou and Luo, who developed a neural network based on Legendre
polynomials to solve ordinary differential equations [YHL18]. Also, according to Dash,
implementing Legendre polynomial in recurrent neural networks based predicter can sig-
nificantly increase the performance of the prediction [Das20].

There are still many ways to construct the Legendre polynomials. In order to imple-
ment Legendre polynomials, we present the Rodrigues’ formula that generates univariate
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Legendre polynomials.

Pn(x) =
1

2nn!

dn

dxn
(x2 − x)n

where Pn(x) denotes the univariate Legendre polynomials of degree n, dn

dxn
denotes the

n’th derivative with respect to x.
Another way to construct the Legendre Polynomials is to define this basis as the solution

to an orthogonal system with respect to the weight function w(x) = 1 over the interval
[−1, 1]. That is Pn(x) is a polynomial such that∫ 1

−1

Pm(x)Pn(x) = 0 if n 6= m.

Though this formulation is terrible for solving the exact expression of Legendre Polyno-
mials, it shows that Legendre polynomials is an orthogonal polynomial with respect to the
inner product

∫ 1

−1
dx. Thus, this definition directly provided us the coefficient extraction

map associated to Legendre Polynomials in the univariate case.
Then, via the same treatment introduced in Remark 2.3 and Proposition 2.29, we

have the coefficient extraction map associated to Legendre polynomials be the following
algorithm.

Algorithm 4: Coefficient Extraction Map for Legendre Polynomial

Result: Coefficient of b in p
Input: p be any polynomial, b be an element of a multivariate Legendre basis
coeff =

∫ 1

−1
...
∫ 1

−1
p(x)b(x)dx1...dxn;

norm =
∫ 1

−1
...
∫ 1

−1
b(x)b(x)dx1...dxn;

return coeff
norm

;

2.4.2.3. Jacobi Polynomials. The last kind of orthogonal polynomial that we will consider
is the Jacobi polynomial. Not surprisingly, there are many ways to construct the poly-
nomial. The way that is most handy in implementation is the Rodrigues’s formula. In
univariate case, we have

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
[(1− x)α(1 + x)β(1− x2)n],

where P
(α,β)
n (x) is the Jacobi polynomial with parameter α, β with degree n.

The Jacobi polynomials are orthogonal under the inner product

〈P (α,β)
i (x), P

(α,β)
j (x)〉 =

∫ 1

−1

(1− x)α(1 + x)βP
(α,β)
i (x)P

(α,β)
j (x)dx.

In fact, Jacobi polynomials are the general case for all the orthogonal polynomials that
are mentioned above. When setting α = 0, β = 0, we obtain the Legendre polynomials.
(So it is not surprising that they both can be generated using Rodrigues’ formula).
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With the same treatment stated in Remark 2.3 and Proposition 2.29, we have the
coefficient extraction map associated to multivariate Jacobi polynomials be the following
algorithm.

Algorithm 5: Coefficient Extraction Map for Jacobi Polynomial

Result: Coefficient of b in p
Input: p be any Polynomial, b be an element of a multivariate Jacobi basis
coeff =

∫ 1

−1
...
∫ 1

−1
(1− x1)α(1 + xn)β...(1− xn)α(1 + xn)βp(x)b(x)dx1...dxn;

norm =
∫ 1

−1
...
∫ 1

−1
(1− x1)α(1 + xn)β...(1− xn)α(1 + xn)βb(x)b(x)dx1...dxn;

return coeff
norm

;

2.5. Solving Semidefinite Program. Toy examples maybe
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3. Numerical Results

In this section, we discuss the numerical results when performing experiments. We will
divide the discussion into two subsections, one devoted for the univariate polynomials,
and the other is for the bivariate polynomials.

3.1. Univariate Polynomials. After carrying out the algorithms that described above,
the first observations that we made is when the basis of the give polynomial and the
basis of the moment matrix are the same, the condition number of the resulted coefficient
moment matrix tends to be small and stable. In particular, the monomial polynomial
basis seems to have the smallest condition number among the other polynomials. And
among all the orthogonal polynomials, the Chebyshev first kind polynomial seems the
have the best behavior.

(a) monomial polynomial with monomial mo-
ment matrix

(b) ChebyShev first kind polynomial with
ChebyShev first kind moment matrix

(c) ChebyShev second kind polynomial with
ChebyShev second kind moment matrix

(d) Legendre polynomial with legendre mo-
ment matrix

Figure 1. Condition number of the coefficient moment matrix for same basis (univ)
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Another phenomenon that we observe is that the monomial polynomial base do not work
well with orthogonal polynomial bases. When using monomial to serve as the polynomial
basis of Moment Matrix and using orthogonal polynomial basis to express the original
polynomial, or the other way around, the condition number of the coefficient moment
matrix tends to blow up with the increasing of the degree of the polynomials.

(a) ChebyShev first kind polynomial with
monomial moment matrix

(b) monomial polynomial with ChebyShev
second Kind moment matrix

(c) Legendre polynomial with monomial mo-
ment matrix

(d) Jacobi polynomial with monomial mo-
ment matrix

Figure 2. Monomial with Orthogonal Polynomials (univ)

On the other hand, the orthogonal polynomials tend to work very well when they are
between each other. We can see the scale of the condition number for is dramatically
smaller than the condition numbers with monomial involved.



HONORS PROJECT 19

(a) ChebyShev first kind polynomial with
ChebyShev second kind moment matrix

(b) ChebyShev second kind polynomial with
ChebyShev first kind moment matrix

(c) Legendre polynomial with ChebyShev
first kind moment matrix

(d) Chebyshev first kind polynomial with Le-
gendre moment matrix

Figure 3. Monomial with Orthogonal Polynomials (univ)

Here, we summarize the results in a table of the 4 polynomials we are experimented
with when the degree of the polynomial is 14. We left out the Jacobi polynomial, because
Chebyshev polynomials and Legendre polynomials are special cases of it.

Polynomial Basis
Moment Matrix Basis

Monomial Chebyshev 1st Chebyshev 2nd Legendre

Monomial 2.122801e+01 8.866559e+04 1.040619e+05 4.401169e+04
Chebyshev 1st 3.643853e+04 2.673064e+01 4.463266e+01 2.428417e+01
Chebyshev 2nd 5.248902e+04 1.701201e+02 3.629213e+01 7.221286e+01
Legendre 8.260979e+03 9.981569e+01 6.871414e+01 3.691980e+01

Table 1. condition num of coefficient moment matrix with degree 14 (univ).
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3.2. Bivariate Polynomials. We performed the same experiments for the bivariate
cases. We stopped the experiments when the degree of the polynomial reaches 8, which is
smaller than 14, what we did for the univariate case, due to the computational cost. We
observe similar phenomenon as in univariate case.

Just like in the univariate case, in general, the condition number is smaller when the
basis of the polynomials and the basis of the moment matrix is the same. The monomial
still have the smallest condition number, and Chebyshev first kind is outperforming other
orthogonal basis by a small margin.

(a) monomial polynomial with monomial mo-
ment matrix

(b) ChebyShev first kind polynomial with
ChebyShev first kind moment matrix

(c) ChebyShev second kind polynomial with
ChebyShev second kind moment matrix

(d) Legendre polynomial with legendre mo-
ment matrix

Figure 4. condition num of the coefficient moment matrix for same basis (biv)

When we have a combination of monomials and orthogonal polynomials, the condition
number again grow very fast as the degree of the polynomial increase.
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(a) ChebyShev first kind polynomial with
monomial moment matrix

(b) monomial polynomial with ChebyShev
second Kind moment matrix

(c) Legendre polynomial with monomial mo-
ment matrix

(d) Jacobi polynomial with monomial mo-
ment matrix

Figure 5. Monomial with Orthogonal Polynomials (biv)

When we are comingling orthogonal polynomials, the behavior of the system is more
stable. However, when we have Chebyshve first kind as the basis for the give polynomial
and Legendre polynomial for the basis of the coefficient moment matrix, the condition
number is actually lower comparing to we use both Chebyshev first kind or both Legendre
basis.
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(a) ChebyShev first kind polynomial with
ChebyShev second kind moment matrix

(b) ChebyShev second kind polynomial with
ChebyShev first kind moment matrix

(c) Legendre polynomial with ChebyShev
first kind moment matrix

(d) Chebyshev first kind polynomial with Le-
gendre moment matrix

Figure 6. Monomial with Orthogonal Polynomials (biv)

Here, we do two tables to summarize the condition number of the combinations of the
4 basis that we tested on in both univariate case and bivariate case. When comparing the
two tables, we can see that the condition number is significantly larger than the univariate
case.
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Polynomial Basis
Moment Matrix Basis

Monomial Chebyshev 1st Chebyshev 2nd Legendre

Monomial 1.2114041e+01 9.2931794e+02 7.3426803e+02 3.4094072e+02
Chebyshev 1st 2.4395198e+02 1.6377406e+01 2.2771550e+01 1.3558274e+01
Chebyshev 2nd 4.4894498e+02 5.3861887e+01 1.7604737e+01 2.9399442e+01
Legendre 8.5482089e+01 3.9905724e+01 3.2969591e+01 1.8699677e+01

Table 2. condition num of coefficient moment matrix with degree 8 (univ).

Polynomial Basis
Moment Matrix Basis

Monomial Chebyshev 1st Chebyshev 2nd Legendre

Monomial 6.0303522e+01 3.8821664e+03 2.2060581e+03 1.3954908e+03
Chebyshev 1st 8.2003242e+02 8.2741589e+01 1.2690227e+02 7.2356027e+01
Chebyshev 2nd 1.3583584e+03 4.7372727e+02 9.5693596e+01 2.0181265e+02
Legendre 3.0351806e+02 1.9649165e+02 1.4316038e+02 9.3276473e+01

Table 3. condition num of coefficient moment matrix with degree 8 (biv).
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4. Discussion and Outlook

In this section, we state the observations that we made when generating the numerical
results that we presented in the above section, and we also state some open problems that
related to our findings for potential future efforts.

To begin, we observe that using monomials basis as both basis for input polynomials
and basis for the coefficient moment matrix tends to be a good choice, since it constantly
have very low condition number. Therefore, the linear system that generated by COC
is more robust when the input data is interpolated by random noises. Moreover, when
performing the experiments, the moment matrix with monomial basis has faster running
time, where we measure running time by computer time rather than in complexity theory
terms. As a result, deceivingly, one tends to conclude that we should just choose monomial
bases for both input polynomial and the coefficient moment matrix. However, this is not
true. In fact, monomial basis has disadvantages in stability and running time.

In terms of the stability, in many cases the basis that the input polynomial is using is
determined by the applications rather than by us when performing optimization. From we
can see in the above section, if the input polynomials are expressed in orthogonal basis,
then choosing monomial polynomials as the basis if the coefficient moment matrix would
horribly destroy the stability of the system as the condition number of the linear system
blow up very quickly. One might argue that we can simply perform a change of basis to
convert orthogonal basis to monomials. However, this will also introduce the same level,
if not more, of the changes to the condition numbers, because we would need to consider
the condition number of the change of a basis matrix as well. Hence, in that case we need
to choose the suitable polynomial basis for our coefficient moment matrix that best serves
the applications.

In terms of the running time, the reason that monomial basis have faster computer
time is because when using orthogonal polynomials as the basis of the coefficients moment
matrix, we need to evaluate an integral that is needed for the orthogonal basis to extract
the coefficients. However, in applications, this is more or less is an overhead work that one
shall perform before executing optimizations. The reason is in applications, the number of
variate and degree of the polynomials involved are pre-determined. Therefore, one could
just calculate the needed integral for each basis beforehand. Hence, when performing the
optimizations, all one need to do is exploiting the linearity of the integrations to extract
the coefficients that are needed. Because of that, each step in the optimization process
would only require constant time multiplication to obtain the coefficients, rather than
performing O(mk + nd+ l) coefficients extraction algorithm as indicated in 2.4.1.

As a result, one should try to use orthogonal basis in the coefficient moment matrix
when the application allows to and the stability of the linear system generated by the
COC algoirthm is not too poor.

Another observation that we can easily make, which is also indicted in the previous
section, is that when comingle monomial basis with orthogonal basis, the condition number
of the linear system expload very fast. This is a question that we didn’t find an immediate
answer to it. One conjecture that we can make is because the orthogonal polynomials are
all special cases of Jacobi polynomials, they share similar structures in their bases. As
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a result, when performing the integration, the result is relatively stable. However, this
might be a question that worth to take a closer look. Maybe there are some structures
that polynomial basis has that can be used to deduce the stability of the system, rather
than using numerical experiments.

Lastly, we would like to state, other than the canonical SOS certificate of the nonnega-
tivity of polynomials, there are many other certificates that captures different intuitions or
have different usages in applications. For example, sums of nonnegative circuit polynomi-
als (SOPN)[IdW16], a recently introduced certificate of nonnegativity, is more applicable
in constraint polynomial optimizations [Wan21], and can be used to substitute (SOS) for
optimization problems over hypercube, on which (SOS) has worse performance comparing
to other algorithms [DKdW18]. Therefore, it would also be interesting to see whether dif-
ferent choices of polynomial basis can impact the stability of the system generated when
using other certificates to try to determine whether a polynomial is nonnegative or not.
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